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ABSTRACT 
 

An efficient methodology is proposed to find optimal shape of arch dams on the basis of 
constrained natural frequencies. The optimization is carried out by virtual sub population 
(VSP) evolutionary algorithm employing real values of design variables. In order to reduce 
the computational cost of the optimization process, the arch dam natural frequencies are 
predicted by properly trained back propagation (BP) and wavelet back propagation (WBP) 
neural networks. The WBP network provides better generalization compared with the 
standard BP network. The numerical results demonstrate the computational merits of the 
proposed methodology for optimum design of arch dams. 
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1. INTRODUCTION 
 

It is well known that the natural frequencies are fundamental parameters which affect 
dynamic behavior of arch dams. Therefore, some constraints should be considered on 
natural frequency range so that the dynamic behavior of arch dam is modified. Furthermore, 
the eventual resonance phenomenon is eliminated. Traditionally, to achieve this purpose, the 
dam must be frequently analyzed and designed, that is an initial scheme is given and 
analyzed. If it satisfies the demands of design specifications, the scheme is adopted. 
Otherwise, the shape of the dam is modified and reanalyzed [1]. The shape of dam obtained 
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in this way is feasible but not necessarily optimal. Moreover, this procedure is very tedious. 
The process can be easily and reliably implemented by employing optimization techniques. 
In the last years, some progress has been made in optimum design of arch dams considering 
stress constraints. Almost all of them have used conventional methods for analysis 
approximation and optimization [2-4]. These methods usually employ derivative 
calculations and may be trapped into local optima.  

In this study, an efficient method is presented to find optimal shape of arch dams with 
constrained natural frequencies. The arch dam cost including concrete volume and the 
casting areas is considered as objective function. The design variables are geometric 
parameters of arch dam. To implement a practical design optimization, many constraints 
such as stress, displacement, stability requirement, and frequency constraints should be 
considered. In the present study, in order to simplify the optimization operation, only 
frequency and some geometrical constraints are taken.  

In the field of structural optimization, one of the most popular evolutionary algorithms is 
genetic algorithm (GA) [5-10]. The standard GA is not efficient to find the solution in the 
problems with a great number of design variables. In order to eliminate this shortcoming of 
GA, virtual sub population (VSP) method is employed [11]. In this method all the necessary 
mathematical models of the natural evolution operations are implemented on the small initial 
population to access optimal solution on iterative basis. Nevertheless, the stochastic nature 
of evolutionary search techniques makes the convergence of the process slow. To accelerate 
the optimization process and reduce the computational effort, two strategies are adopted. 
The first strategy is to employ the real values of the design variables instead of their binary 
cods. The second one is to predict the natural frequencies of arch dams using properly 
trained neural networks instead of direct evaluation. Back propagation (BP) and wavelet 
back propagation (WBP) neural networks are employed for this purpose. a number of neural 
networks such as radial basis function (RBF), generalized regression (GR), counter 
propagation (CP), back propagation (BP) and wavelet back propagation (WBP) neural 
networks have been used in civil engineering applications [11-18]. However, a few 
researchers have been worked on designing and applying of the wavelet neural networks 
[12-14]. In the present study, a daughter wavelet function with the fixed position and 
dilation is considered as the hidden layer neurons activation function. The results of BP and 
WBP testing indicate that the WBP possesses the best performance generality. 

The numerical results reveal the robustness and high performance of the suggested 
methods for optimum design of arch dams. Also, it is demonstrated that, the optimum design 
obtained by VSP using the WBP network is the best compared with the other results. 

 
 

2. GEOMETRICAL MODEL OF ARCH DAM 
 

2.1. Shape of central vertical section 

For the central vertical section of double-curvature arch dam, as shown in Figure 1, one 
polynomial of nth order is used to determine the curve of upstream boundary and another 
polynomial is used to determine the thickness. In this study, a parabolic function is 
considered for the curve of upstream face as [2, 3]:   
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where h and s are the height of the dam and the slope at crest, respectively and the point 
where the slope of the upstream face equals to zero is z=β h in which β is constant. 
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Figure 1. Central vertical section of arch dam 
 
A quadratic function for the thickness of central vertical section is also chosen as: 
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in which tc1, tc2 and tc3 are the thicknesses of the central vertical section at z=0, z=λ h and 
z=h , respectively and λ is a factor in the range of (0,1) and in this study is considered as 
λ=0.55. 

 
2.2. Shape of horizontal section 

As shown in Figure 2, for the purpose of symmetrical canyon and arch thickening from 
crown to abutment, the shape of the horizontal section of a parabolic arch dam is determined 
by the following two parabolas [3]: 
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Figure 2. the shape of horizontal section of a parabolic 
 
At the upstream face of dam:   
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At the downstream face of dam: 
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where ru and rd are radii of curvatures correspond to upstream and downstream curves, 
respectively and functions of nth order with respect to z can be used for those radii. 

In this study, assuming n=2, ru and rd are considered as quadratic functions:  
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where ru1, ru2, ru3 and rd1, rd2, rd3 are  values of  ru and rd at z=0, z= λh and z=h, respectively. 

 
 

3. FINITE ELEMENT MODEL OF ARCH DAM 
 

A finite element model based on modal analysis for double-curvature arch dam is presented. 
The arch dam is treated as a three dimensional linear structure. To mesh of the arch dam 
body twenty-node isoperimetric solid element is used. It is assumed that the reservoir is 
empty and dam foundation is rigid to avoid the extra complexities that would otherwise 
arise. The physical and mechanical properties involved here are the concrete density 
(2.4kN.s2/m4), the concrete poison’s ratio (0.2) and the concrete elasticity (2.1×107 kN/m2). 
The finite element model of a parabolic arch dam is depicted in Figure 3. 
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Figure 3. The finite element model of the parabolic arch dam 
 
The Lanczos method is used for eigenvalue extraction. This method is useful for large-

scale structures and typically, is applicable to the type of problems solved using the 
subspace eigenvalue method, however, at a faster convergence rate [19]. 

 
        

4. NEURAL NETWORKS 
 

In the recent years, neural networks are considered as more appropriate techniques for 
simplification of complex and time consuming problems. The interest shown to neural 
networks is mainly due to their ability to process and map external data and information 
based on past experiences.  

Neural networks are not programmed to solve specific problems. Indeed, neural networks 
never use rules or physic equations related to the specific problem in which they are 
employed. Neural networks use the knowledge gained from past experiences to adapt 
themselves to solve the new problems. As a matter of fact, learning is never selective and it 
is not limited only to the explicit and desired knowledge but it also involves implicit 
information that sometimes are not well-known a priori even to the designer. Indeed, one of 
the most important limitations of neural networks is that they are not able to provide 
explanations and justifications for their results and answers. This fact is the direct 
consequence of the intrinsic nature of a neural network in which knowledge and experiences 
are not well localized but are redistributed to each neuron. Then a shared out representation 
of concepts, quantities and data is obtained. 

 
4.1. BP neural networks  

Back propagation was created by generalizing the Widrow-Hoff learning rule [20] to 
multilayer networks and nonlinear differentiable transfer functions. Input vectors and the 
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corresponding target vectors are used to train a network until it can approximate a function, 
associate input vectors with specific output vectors. Networks with a sigmoid layer and a 
linear output layer are capable of approximating any function with a finite number of 
discontinuities. Standard back propagation is a gradient descent algorithm, in which the 
network weights are moved along the negative of the gradient of the performance function. 
In this study Levenberg-Marquardt (LM) [21] methods is employed.  

 
4.2. Wavelet neural networks  

Wavelets must have at least a minimum oscillation and a fast decay to zero of its amplitude. 
This property is analogous to an admissibility condition of a function that is required for the 
wavelet transform [22]. Sets of wavelets are employed to approximate a signal and the goal 
is to find a set of daughter wavelets constructed by a dilated and translated original wavelets 
or mother wavelets that best represent the signal. The daughter wavelets are generated from 
a single mother wavelet )(th by dilation and translation:  

 
 )()( 1
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  (8) 

 
where j > 0 and k are the dilation and the translation factors, respectively [23].  

Wavelet neural networks employing wavelets as the activation functions recently have 
been researched as an alternative approach to the neural networks with sigmoidal activation 
functions. The combination of wavelet theory and neural network concepts has led to the 
development of wavelet networks. In wavelet networks, both the position and the dilation of 
the wavelets may be optimized besides the weights. In the present study, wavelet neural 
network is referred to neural network using wavelets as activation function of hidden layer 
neurons with the fixed position and the dilation. 

 
4.3. WBP neural networks  

BP network is now the most popular mapping neural network. Substituting of BP neurons 
activation function with some wavelet functions may improve its performance generality. 
Activation function of hidden layer neurons in BP network is sigmoidal function. To design 
wavelet back propagation (WBP) network the hidden layer sigmoidal activation function of 
BP network is substituted with POLYWOG1 wavelet [23]:  
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The daughter POLYWOG1 wavelet is obtained by substituting Eq. (9) into Eq. (8): 
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In this study, to design WBP network, the position and dilation of the POLYWOG1 
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wavelets are fixed and only the network weights are optimized by LM algorithm. The best 
results are obtained by considering j = 2 and k = 0 in Eq. (10).  

One of the problems that occur during the neural network training is called overfitting. 
One method for preventing of overfitting and improving network generalization is called 
regularization [24]. This procedure is employed in the present work to enhance the 
generalization of the networks. 

 
 

5. ARCH DAM OPTIMIZATION 
 

5.1. Mathematical model and optimization variables  

The optimization problem is formally stated as follows: 
 

 
ul XXX
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 (11) 

 

where X is the vector of design variables with n unknowns, gj is jth constraint from m 
inequality constraints and w(X) represents the objective function that should be minimized. 
Also, Xl and Xu are stood for the lower and upper bounds of design variable vector.  

 
5.1.1. Design variables 

The most effective parameters for creating the arch dam geometry were mentioned in 
section 2. The parameters can be adopted as design variables: 
 
 }{T
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where the vector of design variables cantinas 11 shape parameters of arch dam. 
 

5.1.2. Design constraints  

Design constraints are divided into some groups including the structural, geometrical and 
stability constraints. The structural constraints are the restricted natural frequencies that are 
defined as follows: 
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where frn , frln and frun are the nth natural frequency, lower bound and upper bound of  the 
nth natural frequency, respectively. Also, nfr is the number of natural frequencies. 

The most important geometric constrains are those that prevent from intersection of 
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upstream face and downstream face as: 
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where rdn and run are radii of curvatures at the down and upstream faces of the dam in nth 
position in z direction.                      

The geometric constrain that is applied for facile construction, is defined as: 
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where s is the slope of overhang at the downstream and upstream faces of dam and sall is its 
allowable value. Usually sall is taken as 0.3.  

The constraints ensuring the sliding stability of the dam may be expressed as: 
 

 
ul φφφ   (16) 

 
where φ is the central angle of arch dam and usually: 11090  φ [1]. 

 
5.1.3. Objective function 

The objective function is the cost of the dam, which may be expressed as: 
 

 )()()( XapXvpXw av   (17) 
 

where v(X) and a(X) are the concrete volume and the casting area of dam body. The unit 
price of concrete and casting are chosen as pv=$33.34 and pa=$6.67, respectively. 

To evaluate v(X) and a(X) a computer program is coded using MATLAB [24]. 
  
 

6. EVOLUTIONARY ALGORITHMS 
 

In structural optimization problems, where the objective function and the constraints are 
highly non-linear functions of the design variables, the computational effort spent in 
gradient calculations required by the mathematical programming algorithms is usually large. 
In the recent years, it was found that probabilistic search algorithms are computationally 
efficient even if greater number of optimization cycles is needed to reach the optimum. 
These cycles are computationally less expensive than in the case of mathematical 
programming algorithms since they do not need gradient evaluation. Furthermore, 
probabilistic methodologies were found to be more robust in finding the global optima, due 
to their random search, whereas mathematical programming algorithms may be trapped into 
local optima [25]. 
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6.1. Continuous VSP methods  

In the present study, to obtain the optimum shape of arch dams under frequency constraints 
the VSP method is employed based on the real values [26] of design variables instead of 
their binary codes. By using this strategy the discrete nature of VSP optimization turns into 
continuous one and design variables are presented to the crossover and mutation operators 
with their real values. Continuous optimization methods require less computer effort 
comparing with the discrete methods. Numerical results show that, employing continuous 
VSP method in shape optimization can lead to appropriate solution.  

 
 

7. MAIN STEPS OF ARCH DAM OPTIMIZATION  
 

The main steps for the optimization of arch dams by the proposed methodology are 
summarized as follows: 

 
(a) Generating a number of arch dams considering their geometric parameters.  
(b) Evaluating natural frequencies of the generated dams by ANSYS [19].  
(c) Using the provided data, BP and WBP networks are trained to predict the natural 

frequencies. 
(d) Selecting some parent vectors from the design variables space.   
(e) Evaluating natural frequencies of the dams using trained BP and WBP networks.  
(f) Checking the constraints for feasibility of parent vectors. 
(g) Generating offspring vectors using continuous crossover and continuous mutation 

operators.   
(h) Employing the trained BP and WBP networks for predicting the natural frequencies 

of the offspring.  
(i) Checking the constraints. 
(j) Checking convergence. 
(k) Selecting a number of parent vectors from the previous solution and some random 

variables as a VSP. 
(l) Repeating steps (h) to (k) until the proper solution is met. 

 
 

8. TEST EXAMPLE  
 

In order to assess the effectiveness of proposed methodology, the shape optimization of an 
arch dam with a height of 180 m is considered. The width of the valley in its bottom and top 
are 40 m and 220 m, respectively. The lower and upper bounds of design variables using 
empirical design methods are considered as:  

 

 

 m 50m 10      m 50m 10    m 40m 12                     

 m 120m 40   m 120m 40    m 30m 8      1.00

 m 180m 50      180m50m      12m4m      0.30 111
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In current study, natural frequency constraints are imposed as: 
 

 Hz       fr     fr     frfr 4321 87Hz6Hz3Hz   (19) 

 
The errors between exact and approximate frequencies are also calculated using the 

following equation: 
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where frap and frex represent the approximate and exact frequencies, respectively. 

With the mentioned conditions, the optimization is carried out by the following methods: 
(a) GA using exact analysis. 
(b) GA using approximate analysis by BP network. 
(c) GA using approximate analysis by WBP network. 
(d) VSP using exact analysis. 
(e) VSP using approximate analysis by BP network. 
(f) VSP using approximate analysis by WBP network.  

 
The parameters of GA and VSP methods are given in Table 1. The time of all 

computations is evaluated in clock time by a personal Pentium IV 3000MHz. 
 

Table 1. The parameters of GA and VSP method 

Parameters GA VSP 

Population size Crossover method 50 three points 30 three points 

Crossover rate 0.9 0.9 

Mutation rate 0.001 0.001 

Maximum generation 100 30 

 
8.1. Data selection for training the networks  

In this study, the input space consists of design variables of the arch dams. The 
corresponding natural frequencies of the dams are considered as the target space 
components. A total number of 343 arch dam samples are randomly generated based on 
design variables and their natural frequencies are evaluated using the finite element analysis. 
From which, 260 and 83 samples are used for training and testing the networks, respectively. 

 
8.2. Training and testing the networks  

To train and test the neural networks, MATLAB is utilized. The times of BP and WBP 
training are about 1.5 min and 1.1 min, respectively. Information of the performance 
generality of the networks in testing mode is given in Table 2. 
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Table 2. Maximum and mean errors of BP and WBP networks in testing mode 

Maximum errors (%) Mean errors (%) 
Network 

fr1 fr2 fr3 fr4 fr1 fr2 fr3 fr4 

BP 22.81 18.82 24.17 12.43 3.51 3.16 2.39 2.49 

WBP 10.58 10.16 7.25 9.39 2.86 2.11 1.94 2.17 

 
8.3. Results of optimization  

Optimum solutions obtained by the various methods are given in Table 3. As observed in 
this table the solutions found by VSP are more economical than that of the GA and the best 
solution is attained by VSP using WBP.   

 
Table 3. Optimum designs of the arch dam obtained by the various methods 

Optimum design (m) 

GA VSP Variable No. 

Exact BP WBP Exact BP WBP 

1 0.2254 0.2254 0.2254 0.2703 0.2673 0.2508 

2 0.8172 0.8172 0.9752 0.6747 0.6703 0.7376 

3 4.4306 4.4306 4.4306 4.2636 4.0027 4.0027 

4 23.2672 23.2672 23.2672 23.0512 23.0512 18.0125 

5 14.1411 13.6326 13.6326 12.0258 12.258 12.0258 

6 129.3949 129.3949 129.3949 139.1293 139.1293 149.9189 

7 95.0685 95.0685 92.0741 100.2709 100.2709 94.6904 

8 39.4704 39.4704 39.4704 49.9067 49.9067 49.2262 

9 129.0289 129.0289 129.0289 131.5843 138.6503 148.2564 

10 40.8120 40.8120 40.8120 72.7854 72.7854 53.0239 

11 31.0890 31.0890 31.0890 42.8869 39.314 48.2745 

Cost ($106) 8.809 8.806 8.740 7.540 7.407 6.576 

Generations 90 92 87 78 95 90 

Time (min) 375 2.5 2.0 195 2.4 2.3 

 
The errors of approximate frequencies of optimum dams predicted by the BP and WBP 

networks are compared with their corresponding actual ones, computed by via the finite 
element analysis, in Table 4. It can be observed that, although the accuracy of approximate 
frequencies obtained by all the methods is good, the accuracy of results obtained by VSP 
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method using WBP network is the best. 
 

Table 4. Error percentage of approximate frequencies of optimum dams 

GA VSP 
Frequency No. 

BP WBP BP WBP 

1 1.317 1.165 2.177 0.677 

2 3.664 2.130 3.724 1.656 

3 2.853 0.492 3.149 0.117 

4 3.330 0.929 1.858 0.559 

Ave. 2.791 1.179 2.727 0.752 

 
The present study demonstrates that the combination of VSP method with WBP neural 

networks creates a reliable and powerful tool for optimization of arch dams with multiple 
natural frequency constraints. 

 
 

9. CONCLUSIONS  
 

In the present study, an efficient optimization procedure is developed to find the optimal 
shape of arch dams with frequency constraints employing real values of the design variables. 
To achieve this task, a combination of the evolutionary algorithm and neural networks is 
utilized. The evolutionary algorithm used in this investigation is continuous VSP method. It 
has been observed that continuous VSP method results in a better solution and a greater 
efficiency compared with the standard GA. Performing arch dam optimization using the 
accurate modal analysis through finite element analysis is a time consuming procedure. To 
reduce the computational time of the optimization process, the natural frequencies of the 
arch dam are predicted by properly trained BP and WBP neural networks. The results of the 
network testing show the higher performance generality of the WBP compared with BP 
network. Numerical results indicated that the best optimization solution has been attained by 
VSP method using WBP network. Also, it is observed that using the proposed optimization 
strategy the time of optimization can be considerably reduced while the computational errors 
appeared due to approximation, are negligible.  
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